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LIQUID CRYSTALS, 1989, VOL. 5 ,  No. 2, 601-615 

Equal G analysis of ternary liquid-crystalline systems 

by GRANT E. NEBEL and GERALD R. VAN HECKE 
Department of Chemistry, Harvey Mudd College, Claremont, 

California 9171 1, U.S.A. 

The equal Gibbs energy analysis of binary liquid-crystalline systems can 
predict, to a high degree of accuracy, the phase diagram of the binary system. We 
extend this analysis to ternary systems. Two systems of homologous dialkyloxy- 
azoxybenzenes were studied. In particular we studied the mixtures 6-1-5 and 
6-4-5, where the number denotes the number of carbon atoms in the terminal alkyl 
chain. The experimental temperature-composition phase diagrams were deter- 
mined by differential scanning calorimetry and by optical microscopy using a 
ternary contact method as well as individual compositions. Both the crystal- 
nematic and nematic-isotropic phase regions were studied. The first mixture is 
highly non-ideal, whereas the second is almost ideal. The form used for the excess 
Gibbs energy was 

AGE = AA,2 xy + AAZ3 y(l - x - y )  

+ AAI3 ~ ( 1  - x - y )  + AAj23 ~ y ( l  - x - y) .  

This particular form, where x, y and (1 - x - y )  are the molar fractions of the 
three components and Ai,, are the interaction parameters, either binary or ternary, 
looks at the origins of the excess Gibbs energies from the view of the three binary 
systems and a ternary perturbation. A method of treating ternary solid solution- 
liquid phase equilibria is introduced and discussed. The success of the method and 
the relative magnitudes and meanings of the parameters are discussed. 

1. Introduction 
Mixtures of liquid crystals have been, and continue to be, extensively studied. 

Very often such studies have been directed towards the analysis of binary isobaric 
temperature-composition phase diagrams. The analysis of phase diagrams is generally 
made by comparing what would be expected ideally with experiment. The difference 
between ideal and experiment is generally ascribed to the existence of non-idealities 
in the mixture. It is possible to quantify these non-idealities by calculating the Gibbs 
energy in excess expected ideal value. 

We have applied a technique, drawn largely from the literature of materials science 
[I], called the equal G analysis, to the study of binary phase diagrams of liquid crystals 
[2]. The equal Gibbs energy analysis allows the quantitative calculation of the excess 
energy of a system from its phase diagram. This excess Gibbs energy must arise from 
the intermolecular forces present in the mixture of materials and is a quantitative 
description of those intermolecular forces. Our objects in this study were two-fold: 
first, to extend the applicability of the equal G analysis to ternary systems and, 
secondly, to make the first attempts at understanding the nature and magnitude of the 
liquid phase intermolecular forces present in two ternary systems each exhibiting 
nematic phases. Specifically, we studied mixtures of homologous 4,4’-di-n-alkyloxy- 
azoxybenzenes whose pure and binary phase behaviours were well known. [3-51. 
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602 G. E. Nebel and G. R. Van Hecke 

2. Theory 
The Gibbs potential for any phase under constant pressure may be expressed as 

a weighted sum of the individual chemical potentials of all components in the phase. 
For the ternary systems under study here, the molar fraction of components 1 and 2 
will be designated x and y ,  respectively. The molar fraction of the third component 
depends on the first two and is written as 1 - x - y .  The equal G analysis begins by 
setting equal the total Gibbs potential of each phase. The isobaric locus of temperature 
and composition points where the Gibbs potentials of phases a and p are equal is 
defined by 

xQpl@. + YUkQ + (l - x, - yU)ph = x@pIs + YfipZB + (l - x f l  - yfl)p3fi. (1) 

Denoting the equal G compositions as x and y such that xu = xs = x, yQ = ys  = y ,  
equation (1) becomes 

x(pl@ - PI@) + Y(hf i  - + - - y)@3fl - p3Q) = O' ( 2 )  
We note that solutions to equation (2) at a fixed temperature define the equal G 
compositions at that temperature and are represented graphically by the broken line 
in figure 1 .  The equal G values will always lie between xu and xf l ,  yQ and ya . 

a 

P 

z 
Figure 1. Idealized Gibbs energy surfaces for two phases c( and p in equilibrium under 

isobaric and isothermal conditions. The broken line shows the locus of the equal Gibbs 
intersections which are always found between the equilibrium compositions that are 
determined by the locus of double tangent points. The projection shows the typical 
isothermal, isobaric ternary phase diagram with the equal Gibbs line depicted by -. -. 
(Adapted from figure X-4 of [6].) 
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Equal G analysis of liquid-crystalline systems 603 

The chemical potential difference for a component i between phase a and p is 

Ap, = -AS , (T  - T,) + Ap;, (3) 
where ASl is the molar entropy difference between the CI and p phases at the pressure 
and the standard transition temperature T,. The first term on the right may be called 
the ideal term resulting from a simple first order phase transition. The second term, 
if non-zero, accounts for the failure of the ideal term to describe adequately the true 
chemical potential difference. Moreover, equation (3) assumes a finite entropy change 
for the transition and assumes the heat capacities of the a and phases to be negligibly 
different. Thus, this analysis is only valid for first order phase transitions. 

Substituting equation (3) into equation (2) gives 

x[-ASI (T  - TI) + Ap:] + y [ - A S 2 ( T  - T2) + Ap;] 

+ (1 - x - y ) [ - A & ( T  - T, )  + Ap;] = 0,  (4) 
the solutions to which in terms of x, y and T gives the isobaric equal G surface. The 
excess Gibbs potential difference between the a and fi  phases at any T and p can be 
written as a weighted sum of excess chemical potential differences 

AGE = x A p $  + yApF + (1  - x - y)ApY.  ( 5 )  

Equation (4) can now be solved for temperature in terms of the measurable quantities, 
AS,s, 7;s and the excess Gibbs energy 

x ( A s l  TI - AS, T,) + y(AS2 T, - AS3 T , )  + AS3 T, + ACE 
T =  . (6 )  x(AS1 - AS,)  + y(AS2 - AS,)  + AS, 

For a two component system the equal G line always lies inside the two phase 
coexistence region. This reasoning can be extended to a three component system (see 
figure I), and the equal G line (the projection of the line resulting from the intersection 
of the two isothermal Gibbs energy surfaces in figure 1) will lie inside the two phase 
coexistence region defined by the phase surfaces as shown in figure 2. Since the 
resultant equal G surface must be between the two phase-boundary surfaces, the equal 
G surface will have minima or maxima that coincide with the minima or maxima of 
the two phase region. Moreover, since liquid crystals usually exhibit narrow two- 
phase regions (of the order of 0.1 K on a graph often spanning 50K), the equal G 
surface by itself represents the phase diagram to reasonable accuracy. 

The excess Gibbs potential, the quantitative estimate for the non-ideality of the 
phase diagram, may be determined using equation (6). Equation (6)  can be solved for 
AGE to yield 

AGE = T[x(AS,  - AS3)  + y(AS2 - AS,) + AS,] 
- [x(AS, TI - AS3 7'3)  + ~(5222 - AS, T,) + A33 T3]. (7) 

Knowledge of the transition entropies and temperatures and the experimental T, x 
and y phase diagram points allows ready calculation of AGE.  If AGE is zero, the phase 
diagram is ideal; if AGE is not zero, then the mixture exhibits intermolecular forces 
beyond those intermolecular forces between the pure components. 

Of the several forms for AGE suggested by Lupis [6], we have considered 

GE = Al2xy + A,,y(l - X - y )  + A13x(l - X - y ) ,  
GE = A ~ ~ x , v  + A,,y(I - x - JJ) + AIjx(1 - x - y )  + A123~y(I - x - y ) ,  

(8) 

(9) 
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604 G. E. Nebel and G. R. Van Hecke 

z= 1-x-Y 

Ya 
I 

' Y P  

Y 

Figure 2.  Idealized isobaric, ternary temperature-composition phase diagram showing the 
two phase coexistence region. The system drawn illustrates the case of each binary system 
exhibiting vapour-liquid or solid-solution two phase regions. The isothermal section 
shows the expected ternary isobaric and isothermal phase diagram. The surface depicted 
by the intersection lines in the binary planes is the equal Gibbs surface estimating 
the phase diagram. For clarity, tie lines are not drawn but it is evident that the equal G 
surface will always lie inside the ternary two phase coexistence region. (Adapted from 
figure X-3 of [6].) 

G L  = AIzxy + A,,y(I - x - y )  + AI,x(l  - x - y )  

f x.dl - - y)[A1231X + A1232y + - - y ) ] .  (10) 
These equations express the excess Gibbs potential for a single phase. For the equal 
G treatment, cp - Gf = AGE; that is, the difference between the excess potentials 
in the two phases c1 and p is required. Since equations @)-(lo) are linear in the A 
parameters, the equations for AGE are identical to equations (8)-(lo), except that 
the A parameters are replaced by the differences in the A parameters, A A  = Allkla - 

Equation (8) corresponds to a linear sum of three non-ideal binary systems; 
equation (9) is a linear sum of three non-ideal binary systems plus an excess ternary 
energy; equation (10) is the same as equation (9) except the ternary interaction is 
further parameterized. All three forms satisfy the Gibbs-Duhem equation. For the 
study of liquid crystals, the second function appears most useful, since it allows for 
ternary effects without undue parameter overhead. The literature contains a wealth 
of non-ideal binary phase diagrams. Since some of these have been studied with the 

A,,k,,$. 
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Equal G analysis of liquid-crystalline systems 605 

equal G technique, the binary parameters derived from the ternary method can be 
compared with those derived from studying binary systems. They should be equal. 
Alternatively, the three binary parameters from previously analysed binary systems 
can be used to fit the ternary system with the ternary parameter alone. 

Solving for these parameters from experimental data using any form for AGE 
involves only a simple least squares analysis, since the equal G equation is linear in 
the A parameters. In a more complicated analysis the parameters could be made 
dependent on temperature. It must be kept in mind that this analysis only gives, 
however, the differences in the parameter values between phases, e.g. AA,,  = 
Alzo - A , z B .  Tf some assumptions are made about the non-idealities of one of the 
coexisting phases, then the excess Gibbs potentials for each phase may individually 
be found (see the subsequent discussion of crystal-nematic transitions). 

Given a specific functional form for the excess Gibbs potential in a specific phase, 
such as shown in equations (8)-(lo), the excess chemical potentials in that phase can 
be derived according to equations given by Oonk [l]: 

p: = GE + (1 - X ) ( d G E / d X )  - (y)(dGE/dy), (1 1) 

p;  = GE - (X)(dGE/dX) + (1 - y)(dCE/dy), (12) 

p: = GE - (X)(dGE/dX) - (y>(dGE/dy). (13) 
The use of these equations will be illustrated when analysing the pure solid to nematic 
liquid transitions discussed later. 

3. Experimental methods 
Two systems of homologous 4,4'-di-n-alkyloxyazoxybenzenes were chosen for 

study. They are identified as 6-4-5 and 6-1-5, the number indicating the number of 
carbon atoms in the alkyl chain (e.g. 4 is 4,4'-di-n-butyloxyazoxybenzene). These were 
chosen for study since 6-4-5 is a nearly ideal system in the nematic-isotropic regions, 
whereas 6-1-5 is a highly non-ideal system. 

A newly developed ternary contact method for optical thermal microscopy was 
used to gain general qualitative information about the phase diagrams exhibited by 
the systems [7]. Using this method we determined the approximate temperature ranges 
which were then studied and discovered minimum azeotrope-like behaviour in 
the 6-1-5 system. Both the crystal-nematic (C-N) and nematic-isotropic (N-I) 
transitions were studied; however, the bulk of our work concentrated on the N-T 
transition. 

The N-T transition was studied primarily using microscopic thermal analysis with 
samples of known composition. Samples containing various known amounts of all 
three components were placed on a microscope slide and then melt-mixed. The 
resulting sample was then placed on a hot stage controlled by a Mettler FP52, usually 
a heating rate of 0,2Kmin- ' ,  and viewed with an Olympus BH2 polarizing micro- 
scope. The stage was temperature calibrated using pure benzoic acid. 

The C-N transition was studied using microscopic thermal analysis and differ- 
ential scanning calorimetry. Since both the crystal and nematic phases were found to 
be highly birefringent, the detection of the phase change by optical microscopy was 
difficult. For this reason, the differential scanning calorimeter (Perkin-Elmer Model 
DSC 2 )  was used primarily. However, the experiment was further complicated by the 
presence of a second crystalline phase in the pentane homologue and solid-solution 
formation between the butyl and pentyl homologues. 
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606 G. E. Nebel and  G. R. Van Hecke 

4. Experimental results 
The experimental temperature-composition phase diagram data for the two 

ternary systems are presented in tables 1 (6-1-5) and  2 (6-4-5). Included also in those 
tables are selected pure and binary data drawn from the literature. 

Table 1. Transition temperatures for ternary and binary mixtures of 4,4-di-n-alkyloxyazoxy- 
benzenes, system 6-1-5. Component 6 is di-n-hexyl, 1 is dimethyl and 5 is di-n-pentyl. 
Included are transition temperatures and entropies for the pure components. 

Transition temperature/K 

- 

‘6’ 

Molar fraction 

0.082 
0.085 
0.1 14 
0.131 
0.178 
0.269 
0.284 
0.288 
0.289 
0.41 7 
0.492 
0.534 
0.701 

1.000 
0.800 
0.600 
0.400 
0.200 
o m 0  
0.000 
0.000 
0.000 
0.000 
0.000 
0.200 
0.400 
0.600 
0.800 

* 

‘1’ 

0.4 I0 
0.187 
0.589 
0.782 
0.695 
0.086 
0.253 
0.556 
0.41 3 
0.142 
0.155 
0.149 
0.187 

0.000 
0.200 
0.400 
0.600 
0+300 

I ,000 
0.800 
0.600 
0.400 
0.200 
0.000 
0.000 
0.000 
0.000 
0.000 

~ 

* 

‘5’ C-N 

0.508 
0.728 
0.297 
0.087 
0.127 
0.645 
0.463 
0.156 
0.298 
0.44 I 
0.353 
0.3 17 
0.112 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.200 
0.400 
0.600 
0.800 

1.000 
0.800 
0.600 
0.400 
0.200 

* 

335.70 

345.60 

338.40 

343.80 

348.10 

352.75 
* 

392.65 

348.65 

~ 

N-I 
(4 

395.35 
395.95 
397.35 
401.25 
398.25 
397.05 
395.75 
396.35 
395.75 
397.25 
397.05 
397.75 
397.75 

402.30 
396.90 
394.60 
394.70 
398.00 

40850 
397.60 
391 3 0  
389.20 
390.40 
396.40 
397.00 
397.70 
397.70 
399.90 

* 

395.45 
396.05 
398.1 5 
401.75 
39855 
397.15 
395.85 
396.65 
395.95 
397.45 
397.25 
397.95 
398.05 

402.30 
397.50 
395.20 
395.30 
398.60 

408.50 
398.40 
392.70 
390.00 
39130 

396.40 
397.60 
398.30 
398.30 
400.50 

* 

0.10 
0.10 
0.80 
0.50 
0.30 
0.10 
0.10 
0.30 
0.20 
0.20 
0.20 
0.20 
0.30 

0.00 
0.60 
0.60 
0.60 
0.60 

0.00 
0.80 
1.20 
0.80 
1.10 

0.00 
0.60 
0.60 
0.60 
0.60 

* 
13-827 

9.276 

5-033 

ASIR 
(4 

~- 

0.3 13 

0.169 

0.220 

Data below * are either pure or binary data taken from [5] .  
(a) Lower temperature limit of the nematic-isotropic coexistence region. 
(b) Higher temperature limit of the nematic-isotropic coexistence region. 
(c) The temperature coexistence range. 
(d )  The crystal-nematic transition entropy for the pure component. 
(e)  The nematic-isotropic transition entropy for the pure component. 

5. Data analysis and discussion 
5.1. Nematic-isotropic transitions 

The N-I transition data were analysed using the four-parameter excess Gibbs 
energy function derived from equation (9). The nematic-isotropic excess Gibbs 
energy differences were extracted from the experimental data in tables 1 and  2 by using 
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Equal G analysis of liquid-crystalline systems 607 

Table 2. Transition temperatures for ternary and binary mixtures of 4,4’-di-n-alkyloxyazoxy- 
benzenes, system 6-4-5. Component 6 is di-n-hexyl, 4 is di-n-butyl and 5 is di-n-pentyl. 
Included are transition temperatures and entropies for the pure components. 

__ 
‘6’ 

Molar fraction 

C-N 

Transition temperature/K 
. ._ 

0.387 
0.292 
0.6 I2 
0.305 
0.4 12 
0.457 
0.082 
0.120 
0.781 
0.259 
0.100 
0.108 

1.000 
0.800 
0.600 
0,400 
0.200 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.200 
0.400 
0.600 
0.800 

* 

0.286 
0.579 
0.185 
0.565 
0.422 
0.105 
0.386 
0.198 
0.121 
0.104 
0.613 
0.797 

0.000 
0.200 
0.400 
0.600 
0.800 

1 .ooo 
0.800 
0.600 
0.400 
0.200 

0.000 
0.000 
0.000 
0.000 
0.000 

* 

0.327 
0.129 
0.203 
0.130 
0.166 
0.438 
0532 
0.682 
0.098 
0.637 
0.287 
0.095 

0.000 
0.000 
0.000 
0-000 
0.000 

0.000 
0.200 
0.400 
0.600 
0.800 

1 .ooo 
0+300 
0.600 
0.400 
0.200 

* 

352.35 
356.1 5 
351.15 
353.75 
351.25 
351.35 
359.15 
354.75 
360.35 
351.75 
362.65 

* 
352.75 

378.95 

348.65 

N-I 
(4 

402.35 
406.25 
401.35 
405.85 
403.95 
400.35 
402.85 
400.25 
400.95 
400.25 
406.25 
409.35 

402.30 
403.90 
405.40 
406.90 
408.10 

409.90 
406.70 
404.20 
401.50 
399.10 

396.40 
397.00 
397.70 
397.70 
399.90 

* 

N-I 
(b) 

402.55 
406.55 
401.55 
406.1 5 
404.25 
40065 
403.05 
400.55 
401.25 
400.45 
406.65 
409.65 

402.30 
404.50 
406.00 
407.50 
408.70 

409.90 
407.30 
404.80 
402.10 
399.70 

396.40 
397.60 
398.30 
398.30 
400.50 

* 

AS/ R 
(4 

0.2 
0.3 
0.2 
0.3 
0.3 
0.3 
0.2 
0.3 
0.3 
0.2 
0.4 
0.3 

0.00 
0.60 
0.60 
0.60 
0.60 

0.00 
0.60 
0.60 
0.60 
0.60 

0.00 
0.60 
0.60 
0.60 
0.60 

* 
13.827 

6.644 

5.033 

0.3 13 

0.303 

0.220 

Data below * are either pure or binary data taken from [5]. 
(a)  Lower temperature limit of the nematic-isotropic coexistence region. 
(6) Higher temperature limit of the nematic-isotropic coexistence region. 
(c) The temperature coexistence range. 
( d )  The crystal-nematic transition entropy for the pure component. 
(e)  The nematic-isotropic transition entropy for the pure component. 

equation (7). The parameters obtained by least square analysis of the excess Gibbs 
energy data are presented in table 3. Also in table 3 are the transition temperatures 
and entropies of the pure materials which are necessary for the calculations. These 
parameters produce equal G surfaces, that is, the estimated N-I phase diagrams for 
the systems 6-4-5 and 6-1-5 shown in figures 3 and 5 ,  respectively. In the figures the 
gridded lines represent the equal G surface, calculated using the parameters in 
table 3, and the circles are observed ternary system data points. Figures 4 and 6 
present, respectively, the Gibbs energy surfaces for the 6-4-5 and 6-1-5 systems. Here 
also the gridded surface is the Gibbs energy and the circles are the data points derived 
from the experimental data via equation (7). 
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Figure 3. The nematic-isotropic equal G surface for ternary mixtures of 4,4'-di-n-alkyloxy- 
azoxybenzenes, system 6-1-5. This surface lies between the upper and lower bounds of 
the nematic-isotropic coexistence region and, since this region is of the order of 0.5 K, 
the surface may be taken to be an accurate representation of the phase diagram. The 
gridded lines are the equal G surface calculated with the excess parameters fit to the data. 
The open circles are the observed clearing temperatures. The purely binary data was 
taken from Demus et al. (see table 2 and [5]). The values of the excess parameters 
A, j , /R /K  are (61-) -9.561, (-15) -7.732, (6-5) -2.134 and (615) 28.341, where the 
figures in parentheses are ( i j k ) .  

Table 3. Excess Gibbs energy parameters AA,,k derived for the nematic-isotropic transition 
in the 6-1-5 and 6-4-5 systems. Component 6 is 4,4'-di-n-hexyloxyazobenzene, 1,4  and 
5 homologues are dimethyloxy, di-n-butyloxy and di-n-pentyloxy, respectively. Some of 
the binary parameters have been derived from other methods. 

Nematic-isotropic AA,,k/R/K parameters 

System 

6- 1 
5- 1 
4-5 
6-4 
6-5 

6-1-5 
6-4-5 

(a) (b )  (4 (d 1 
- 9.561 - 8.52 - 9.76 - 6.842 
- 7'732 - 1.06 - 8.12 -9'144 
- 0.544 - 3.29 1.07 X 

0.096 -0.01 - 1.23 X 
- 2.1 34r - 3.57 1.40 X 
- 1.408' 
28.341 
2.787 

-9.619 
X 
X 
X 
X 

Sources: 
(a) Four parameter fit to ternary system, this work. 
(6) Estimated from an empirical correlation of transition enthalpy and carbon number of 

(c) Estimated from an empirical volume/parameter correlation [8]. 
(d)Calculated from binary phase data of Demus et al. using regular solution theory, 

(e) As in (d ) ;  data from Hsu and Johnson [4 a]. 
(f)From 6-1-5 four parameter fit, this work. 
( g )  From 6-4-5 four parameter fit, this work. 

the homologue in question [8]. 

AGE = AA,j X(l - X )  [5, 81. 
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0.  

- . 6  

-1. 

-1.5 

-2. 

6 
d 

609 

Figure 4. The excess Gibbs energy surface for the nematic-isotropic transitions region of 
ternary mixtures of 4,4-di-n-alkyloxyazoxybenzenes, system 6-1-5. The surface quan- 
titatively represents the non-ideality of the mixture. The gridded lines are the equal G 
surface calculated with the excess parameters fit to the data. The open circles are the 
excess energies derived from the observed phase diagram. The purely binary data were 
derived from [5]. 

5 
V 
0 0 0 

0 

"6 

Figure 5.  The crystal-nematic liquidus surfaces for ternary mixtures of 4,4'-di-n-alkyloxy- 
azoxybenzenes, system 6-4-5. The gridded lines are the liquidus surface for the nematic 
phase in equilibrium with pure solid 6 and the equal G surface of the solid solution 
formed by 4-5 and 4-5-6 mixtures, each calculated with the excess parameters fit to the 
data. The open circles are the observed transition temperatures. The purely binary data 
were taken from Demus et al. (see table 1 and [S]). The values of the excess parameters 
A , , / R / K  are (64-) 250, (-45) - 125, (6-5) 164.5 and (645) 1450, where the numbers in 
parentheses are ( i j k ) .  
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Figure 6. The crystal-nematic liquidus lines for the component binary mixtures of 4,4-di-n- 
alkyloxyazoxybenzenes comprising the ternary system 6-4-5. The solid lines represent 
the liquidus surfaces calculated by fitting the three binary systems individually. The open 
circles are the binary data of Demus et ol. (see table 1 and [5 ] ) .  

5.1.1. System 6-4-5 
The 6-4-5 ternary nematic-isotropic phase diagram as estimated by the equal 

Gibbs surface matches the experimental data quite well. The Gibbs surface has the 
shape shown in figure 2 where the deviation from the experiments points is on average 
k 2 K. The reason for studying this system was that it should be ideal or at  least close 
to ideal and the technique should work well. The excess Gibbs energy for this system, 
while small, generally never larger than 0.2R K ( z  1.7/mol), is not zero. Thus, while 
the system is almost ideal, small additional energies which must result from some new 
intermolecular potentials present in the mixture. We find these interactions are more 
prevalent in 5-rich mixtures. The pentyloxy homologue 5 is somewhat anomalous in 
the series, in that its nematic-isotropic transition temperature and entropy, particularly 
the entropy, are not in agreement with the trends in these values set by the other 
homologues. On mixture, binary or ternary, this anomalous behaviour is apparently 
manifest by the introduction of the observed non-ideal behaviour particularly in 
5-rich mixtures. 

5.1.2. System 6-1-5 
The 6-1-5 system was studied because it was known that the binary 6-1 and 5-1 

systems were clearly non-ideal (since they exhibited minima). The binary 5-6 system 
also exhibits some non-ideality. The equal G surface shown in figure 3 estimates the 
experimental data well, though not as well for the 6-4-5 system. Note that a saddle 
ridge exists close to the 6-1 side of the diagram. The excess Gibbs surface and the 
derived data points are illustrated in figure 4. This ternary system is highly non-ideal. 
It should be noted that the non-ideality along the 6-5 edge is quite similar to that 
observed along the 6-5 edge in the 6-4-5 system. These similarities are to be expected. 
What is curious is that, although there are large intermolecular interactions along the 
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6-1 and 5-1 edges, the saddle ridge implies a reduction in those interactions when 5 
is added to 6-1 mixtures and vice versa, although small amounts of 5 are more 
effective in reducing the 6-1 interactions then vice versa. the large interactions in this 
6-1-5 system can be ascribed to significant size differences between the 1 homologue 
compared with the 5 and 6 homologues. How these size differences would account for 
these excess Gibbs energies should be addressable by a microscopic theory perhaps, 
modelled on the work of Sandler and of Tamura [9]. 

5.1.3. System 6-4-5 and system 6-1-5 nematic-isotropic comparisons 
Table 3 contains the AA parameter values for the nematic-isotropic coexistence 

obtained by the equal G method applied to these ternary systems, as well as some 
parameters obtained from the study of pertinent binary systems. Column (a)  of 
table 3 contains the binary parameter differences calculated using the four parameter 
AGE expression derived from equation (9). Columns ( d )  and (e)  present binary 
parameters calculated using the regular solution approximation with AGF = 
AAl, X(l - X) from the binary phase diagram data. The discrepancy between the 
AA6, values in ( d )  and (e) reflects the discrepancy in the original data. The binary 
values in columns (6) and (c) were obtained via the empirical procedure outlined in 
[8]. The agreement is quite satisfying, particularly the magnitudes. Special note should 
be made of the A& values calculated from each ternary system. The agreement is 
quite good, especially considering the relative insensitivity of the surfaces to variation 
in values of the parameters. It is not surprising to note that the ternary parameter for 
the nearly ideal 6-4-5 system is a factor of 10 less than that for the non-ideal 6-1-5 
system. The intriguing, unanswered question at  this point is, what form of microscopic 
theory could account for ternary intermolecular potentials? 

5.2. Crystal-nematic transitions 
The equal G analysis cannot be applied to phase transitions involving equilibria 

between a phase consisting of only one component (i.e. pure) and a phase composed 
of a mixture. In such a case the analysis must be made by studying the chemical 
potentials of the component existing in both phases. For pure solid-liquid mixture 
equilibria, the pure solid has a constant composition and the form of the chemical 
potential for a pure solid will differ from that of a liquid mixture: 

where a would refer to a pure solid phase and /J to a liquid phase, here a nematic 
phase. The asterisk indicates the potential at  a standard temperature and pressure. 
Isobaric and isothermal phase equilibria are, as usual, described by setting p,? equal 
to p l b .  Again using the first order approximation (equation (3)), the equilibrium is 
described by 

where it  should be noted that A,$ = s,, - S,B, the melting transition entropy, and 
that the pure solid phase (a) is assumed to be ideal with 11: equal to zero, whereas the 
liquid mixture (nematic phase) may be non-ideal with & non-zero. Note that since 
the solid phase is assumed to be ideal, the non-ideality of the liquid phase in equilibrium 
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612 G. E. Nebel and G. R. Van Hecke 

with it, can be determined absolutely, sign and magnitude. Equation (16) can be 
solved for the temperature to give 

When dealing with ternary eutectic systems, three equations (1 7) are required, one for 
each leaf of the liquidus surface tied to the point X, = (1, T,) .  (Figures illustrating 
such simple ternary eutectic systems are found in many introductory texts.) The 
temperature at the common intersection point of these three surfaces is the ternary 
eutectic temperature. Noting that the molar fractions must sum to unity, equation 
(16) can be solved for x , ~  and the x l s s  summed to give 

C e x p  { [ A S , ( T  - TJ - pFs]/RT} = 1 i = x,y, 1 - x - y .  (18) 

This equation is a ternary version of the Schroeder-van Laar equation modified to 
include excess energies. The temperature which satisfies equation ( 1  8) is the ternary 
eutectic temperature. In an ideal system all excess chemical potentials are zero. In such 
a case equation (18) is easily solved for the eutectic temperature, knowing the 
transition temperatures and entropies of the three pure components. Comparing this 
calculated temperature with the experimentally observed ternary eutectic temperature, 
obtained readily by a ternary contact method, provides a quick check on the ideality 
of the system. 

To deal with a non-ideal system, some form must again be chosen for the excess 
Gibbs energy. Once a firm is chosen, the individual excess chemical potentials may be 
derived from it by using equations ( I  1)-(13). The excess chemical potentials were 
derived from the four-parameter Gibbs energy equation (9) and are 

1 

p: = A,2(1 - x)y - A*,(l  - x - y ) y  + A1,(1 - x)(l - x - y )  

+ A,,,[xy(l - x - y )  + (1 - x)y(l - 2x - y )  - xy(1 - x - 2y)], 

p: = A, ,x ( l  - y )  + A23(1 - y)(l - x - y )  - A,3(1 - x - y)x 

+ A,*3[xy(l - x - y )  - xy(1 - 2x - y )  + x(1 - y ) ( l  - x - 2y)], 

AI2.v  + A , , @  + y>y  + A,,(x + y)x + A,,,xy(2x + 2v - 1). 

(19) 

(20) 

(21) p: = 

To fit the ternary leaves, the excess chemical potential data was extracted from the 
phase diagram by solving equation (17) for pFN. Each ternary leaf would, in principle, 
provide an independent set of A , ,  parameters for the nematic phase. Presumably the 
three sets would yield comparable results. 

5.2.1.  System 6-1-5 
Experimentally the sytem is observed to form a simple eutectic. The method of 

analysis differed in practice from that just outlined, however.The binary diagrams 
6-1,5-1 and 6-5 were analysed individually first to obtain the binary Al,N parameters. 
With these parameters, the ternary pF, values were fitted with just the ternary A,,,, 
parameter. The parameters obtained in this way are given in table 4 and the calculated 
surfaces agree with the experiment adequately, especially considering the paucity of 
experimental ternary data points. 
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Table 4. Absolute excess Gibbs energy parameters derived for the nematic phase by studying 
the crystal-nematic phase transitions in ternary systems of homologous dialkyloxy- 
azoxybenzenes. The systems were 6-1-5 and 6-4-5, where the numeral stands for the 
homologue of that number of carbon atoms in the terminal alkyloxy group. The binary 
parameters were determined from analysis of the indicated binary system using the 
literature data. The ternary parameters were derived from the present terliary system 
data. 

System Nematic phase 
i jk  AIJk I R I K  

615 6- 1 
5-1 
6-5 
6-1-5 

645 6-4 
4-5 
6-5 
6-4-5 

- 9.3 
41.2 

164.5 
- 2000 

250 
- 125(a) 

164.5 
1450 

(a) Forms a solid solution. 

The resulting values for the A,],  C-N parameters are two orders of magnitude 
higher than those of the N-I transition. This is not surprising as the heats of transition 
for C-N are nearly two orders of magnitude higher than those for N-I. 

5.2.2. System 6-4-5 
The analysis of this system proved interesting because of the solid solution 

behaviour of the 4-5 mixtures. The results are illustrated in figure 5 ,  which shows the 
locus of the solid solution-nematicus surface and the nematicus-pure solid component 
6 surface. The diagram was analysed by considering the nematic to 4-5 solid solution 
surface to be extended into the ternary composition field as nematic to 4-5-6 solid 
solution surface until the ternary solid solution surface met the nematic-solid pure 6 
leaf. We therefore looked at the diagram as a set of psuedo-binary diagrams with 6 
as one component and the 4-5 solid solution as the other. The two parts of this 
pseudo-binary phase diagram are described by 

(23) x4SAs4 T4 + X5SAS5 T5 + x4N$N + x5N& T =  
X4,AS4 + X5,AS5 - Rln(1 - X6N) 

’ 

where in each case the pFN is given by one of the appropriate equations (19)-(21). To 
derive equation (23) we start with equation (22), looking to modify equation (22) 
taking into account our assumption that the 4-5 solid solution can be treated as a 
pseudo-single component. Since AS6 T, represents the melting enthalpy for pure 6, for 
an arbitrary 4-5 mixture we take the melting enthalpy to be a composition weighted 
value given by X4, AS, T4 + X,, AS5 T, . The transition entropy in the 4-5 mixture is 
also taken to be a composition weighted value, X,, A& + X,, A&. For the excess 
Gibbs energy, we assume the solid phase to be ideal (hence the linear composition 
weighted enthalpy and entropy values), and assign any and all non-ideality to the 
nematic phase whose excess energy we also write as a simple composition weighted 
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614 G. E. Nebel and G. R. Van Hecke 

sum, X,,p;, + X=,NpFN. Substituting these expression into equation (22) yields 
equation (23) except that the replacement of the RlnX,, term by Rln(1 - X,,) 
has to be justified. Our reasoning here is that we are approximating a solid sol- 
ution in equilibrium with components 4 and 5 ,  not component 6, and 1 - X,, 
represents the composition that is not 6. Keeping in mind that since we are con- 
sidering a system whose ratio of X, to A', is constant because we choose a value of X,, 
to start the analysis of the system as psuedo-binary, at any point in the ternary 
system, X,,/X,, = X,N/XsN. Further, in the solid solution X4, + X,, = 1; thus 
X,, = X,, /(XdN + X,,). Making this substitution for compositions in equation (23) 
yields 

X4N As4 '4 f X5N As5 T5 + X4N(&N + x 5 N ) d N  f X5N(&N + x5N)&N 
x4N As4 + X5N As5 - R(x4N + X5N) In (X4N + x5N> 

T =  

(24) 

with compositions only involving the nematic phase. This derivation is not strictly 
correct thermodynamically but is rationalized by its success in describing experiment, 
as illustrated in figure 5. It may also be noted that in the limit of x 6 N  --+ 0, equation 
(23) (or equation (24)) reduces to that which describes just the 4-5 solid solution. 

The actual analysis of the data was made by first estimating thc binary parameters 
ASON and from the 5-6 and 4-6 binary phase data. The ternary parameter A,,,, 
and the parameter A,,, were found by analysing the solid solution-nematic experi- 
mental data. Figure 6 shows the fits to the simple binary phase diagram data. The 

ternary parameter was also obtained from the analysis of the component 6 leaf. 
The ternary parameter values were then averaged. All parameter values are given in 
table 4. These values are the absolute parameters for the nematic phase in this system. 

The estimated phase diagram shown in figure 5 is in excellent agreement with the 
ternary experimental data. Figure 6 shows the three binary diagrams and the calculated 
results relative to thc experimental data of Demus et a/. [5] .  It is somewhat surprising 
to see how non-ideal the nematic phases of these mixtures are. Curiously, the largest 
effects seem to appear in mixtures with molecules of similar size (6-5 and 6-4) yet 4-5 
forms solid solutions. Also curious is the fact that the ternary parameters for 6-1-5 
and 6-4-5 are of opposite sign although of the same magnitude, even when both 
systems are essentially simple eutectics. No explanation for these values is offered. 

6. Summary and conclusions 
The high quality of the data fits leads us to believe that the form chosen for the 

excess Gibbs energy (three excess binary interactions and one excess ternary inter- 
action with no temperature dependence) accurately represents the microscopic 
behaviour of these ternary systems. That is, any molecular theory that attempts to 
explain the non-ideal behaviour of these systems should do so in terms of binary and 
ternary interactions. 

Since the crystalline phase is assumed to be ideal, the parameters derived from 
analysing the C-N transition absolutely estimate the non-ideality of the nematic 
phase, not the difference in non-idealities between the nematic and crystalline phases. 
As mentioned, the latter values are given in table 4. These values indicate that the 
transition from nematic phase to isotropic phase is comparatively ideal (by at  least an 
order of magnitude), but even the isotropic phase is not ideal as might be expected 
for a totally random phase. 
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